Ion specificity in α-helical folding kinetics.
نویسندگان
چکیده
The influence of the salts KCl, NaCl, and NaI at molar concentrations on the α-helical folding kinetics of the alanine-based oligopeptide Ace-AEAAAKEAAAKA-Nme is investigated by means of (explicit-water) molecular dynamics simulations and a diffusional analysis. The mean first passage times for folding and unfolding are found to be highly salt-specific. In particular, the folding times increase about 1 order of magnitude for the sodium salts. The drastic slowing can be traced to long-lived, compact configurations of the partially folded peptide, in which sodium ions are tightly bound by several carbonyl and carboxylate groups. This multiple trapping leads to a nonexponential residence time distribution of the cations in the first solvation shell of the peptide. The analysis of α-helical folding in the framework of diffusion in a reduced (one-dimensional) free energy landscape further shows that the salt not only specifically modifies equilibrium properties but also induces kinetic barriers due to individual ion binding. In the sodium salts, for instance, the peptide's configurational mobility (or "diffusivity") can decrease about 1 order of magnitude. This study demonstrates the highly specific action of ions and highlights the intimate coupling of intramolecular friction and solvent effects in protein folding.
منابع مشابه
N-Alpha-Acetylation of α-Synuclein Increases Its Helical Folding Propensity, GM1 Binding Specificity and Resistance to Aggregation
A switch in the conformational properties of α-synuclein (αS) is hypothesized to be a key step in the pathogenic mechanism of Parkinson's disease (PD). Whereas the beta-sheet-rich state of αS has long been associated with its pathological aggregation in PD, a partially alpha-helical state was found to be related to physiological lipid binding; this suggests a potential role of the alpha-helical...
متن کاملMicroscopic nucleation and propagation rates of an alanine-based α-helix.
An infrared temperature-jump (T-jump) study by Huang et al. (Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 2788-2793) showed that the conformational relaxation kinetics of an alanine-based α-helical peptide depend not only on the final temperature (Tf) but also on the initial temperature (Ti) when Tf is fixed. Their finding indicates that the folding free energy landscape of this peptide is non-tw...
متن کاملMembrane protein folding makes the transition.
T he study of the folding of membrane proteins has lagged far behind that of small soluble proteins—yet proteins that reside within biological membranes account for approximately a third of all proteomes. The article by Huysmans et al. in this issue of PNAS (1) represents a breakthrough by reporting a comprehensive φ-value analysis of the folding of a membrane protein (i.e., PagP) into a lipid ...
متن کاملMapping backbone and side-chain interactions in the transition state of a coupled protein folding and binding reaction.
Understanding the mechanism of protein folding requires a detailed knowledge of the structural properties of the barriers separating unfolded from native conformations. The S-peptide from ribonuclease S forms its α-helical structure only upon binding to the folded S-protein. We characterized the transition state for this binding-induced folding reaction at high resolution by determining the eff...
متن کاملKinetics and Thermodynamics of Membrane Protein Folding
Understanding protein folding has been one of the great challenges in biochemistry and molecular biophysics. Over the past 50 years, many thermodynamic and kinetic studies have been performed addressing the stability of globular proteins. In comparison, advances in the membrane protein folding field lag far behind. Although membrane proteins constitute about a third of the proteins encoded in k...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The journal of physical chemistry. B
دوره 114 43 شماره
صفحات -
تاریخ انتشار 2010